# Unit 3Big Ideas

## Representing Linear Relationships

This week your student will learn how to write equations representing linear relationships. A linear relationship exists between two quantities where one quantity has a constant rate of change with respect to the other. The relationship is called linear because its graph is a line.

For example, say we are 5 mile into a hike heading toward a lake at the end of the trail. If we walk at a speed of 2.5 miles per hour, then for each hour that passes we are 2.5 miles further along the trail. After 1 hour we would be 7.5 miles from the start. After 2 hours we would be 10 miles from the start (assuming no stops). This means there is a linear relationship between miles traveled and hours walked. A graph representing this situation is a line with a slope of 2.5 and a vertical intercept of 5.

The graph shows the height in inches, , of a bamboo plant months after it has been planted.

1. What is the slope of this line? What does that value mean in this context?
2. At what point does the line intersect the -axis? What does that value mean in this context?

Solution:

1. 3. Every month that passes, the bamboo plant grows an additional 3 inches.
2. . This bamboo plant was planted when it was 12 inches tall.

## Finding Slopes

This week your student will investigate linear relationships with slopes that are not positive. Here is an example of a line with negative slope that represents the amount of money on a public transit fare card based on the number of rides you take:

The slope of the line graphed here is since This corresponds to the cost of 1 ride. The vertical intercept is 40, which means the card started out with \$40 on it.

One possible equation for this line is It is important for students to understand that every pair of numbers that is a solution to the equation representing the situation is also a point on the graph representing the situation. (We can also say that every point on the graph of the situation is a solution to the equation representing the situation.)