Lesson 2Mixtures
Learning Goal
Let’s explore how recipes and ratios are related.
Learning Targets
I can explain the meaning of equivalent ratios using examples.
Lesson Terms
- ratio
Warm Up: Flower Pattern
Problem 1
This flower is made up of yellow hexagons, red trapezoids, and green triangles.
Write sentences to describe the ratios of the shapes that make up this pattern.
How many of each shape would be in two copies of this flower pattern?
Activity 1: Powdered Drink Mix
Here are diagrams representing three mixtures of powdered drink mix and water:
Problem 1
How would the taste of Mixture A compare to the taste of Mixture B?
Problem 2
Use the diagrams to complete each statement:
Mixture B uses cups of water and teaspoons of drink mix. The ratio of cups of water to teaspoons of drink mix in Mixture B is .
Mixture C uses cups of water and teaspoons of drink mix. The ratio of cups of water to teaspoons of drink mix in Mixture C is .
Problem 3
How would the taste of Mixture B compare to the taste of Mixture C?
Are you ready for more?
Problem 1
Sports drinks use sodium (better known as salt) to help people replenish electrolytes. Here are the nutrition labels of two sports drinks.
Which of these drinks is saltier? Explain how you know.
If you wanted to make sure a sports drink was less salty than both of the ones given, what ratio of sodium to water would you use?
Activity 2: Batches of Cookies
Problem 1
A recipe for one batch of cookies calls for 5 cups of flour and 2 teaspoons of vanilla.
Draw a diagram that shows the amount of flour and vanilla needed for two batches of cookies.
How many batches can you make with 15 cups of flour and 6 teaspoons of vanilla? Indicate the additional batches by adding more ingredients to your diagram.
How much flour and vanilla would you need for 5 batches of cookies?
Problem 2
Whether the ratio of cups of flour to teaspoons of vanilla is
Find another ratio of cups of flour to teaspoons of vanilla that is equivalent to these ratios.
How many batches can you make using this new ratio of ingredients?
Lesson Summary
When mixing colors, doubling or tripling the amount of each color will create the same shade of the mixed color. In fact, you can always multiply the amount of each color by the same number to create a different amount of the same mixed color.
For example, a batch of dark orange paint uses 4 ml of red paint and 2 ml of yellow paint.
To make two batches of dark orange paint, we can mix 8 ml of red paint with 4 ml of yellow paint.
To make three batches of dark orange paint, we can mix 12 ml of red paint with 6 ml of yellow paint.
Here is a diagram that represents 1, 2, and 3 batches of this recipe.
We say that the ratios