Lesson 5More Estimating Probabilities
Learning Goal
Let’s estimate some probabilities.
Learning Targets
I can calculate the probability of an event when the outcomes in the sample space are not equally likely.
I can explain why results from repeating an experiment may not exactly match the expected probability for an event.
Lesson Terms
- chance experiment
- event
- probability
- random
- sample space
Warm Up: Is It Likely?
Problem 1
If the weather forecast calls for a 20% chance of light rain tomorrow, would you say that it is likely to rain tomorrow?
Problem 2
If the probability of a tornado today is
Problem 3
If the probability of snow this week is 0.85, would you say that it is likely to snow this week?
Activity 1: Making My Head Spin
Problem 1
Work with your group to decide which person will use each spinner. Make sure each person selects a different spinner.
Answer the first set of questions on your own.
Spinner A
Spinner B
Spinner C
Spinner D
Spin your spinner 10 times and record your outcomes.
Did you get all of the different possible outcomes in your 10 spins?
What fraction of your 10 spins landed on 3?
Work with your group to answer the next set of questions.
Share your outcomes with your group and record their outcomes.
Outcomes for spinner A:
Outcomes for spinner B:
Outcomes for spinner C:
Outcomes for spinner D:
Do any of the spinners have the same sample space? If so, do they have the same probabilities for each number to result?
For each spinner, what is the probability that it ends on the number 3? Explain or show your reasoning.
For each spinner, what is the probability that it lands on something other than the number 3? Explain or show your reasoning.
Noah put spinner D on top of his closed binder and spun it 10 times. It never landed on the number 1. How might you explain why this happened?
Han put spinner C on the floor and spun it 10 times. It never landed on the number 3, so he says that the probability of getting a 3 is 0. How might you explain why this happened?
Print Version
Your teacher will give you 4 spinners. Make sure each person in your group uses a different spinner.
Spin your spinner 10 times, and record your outcomes.
Did you get all of the different possible outcomes in your 10 spins?
What fraction of your 10 spins landed on 3?
Next, share your outcomes with your group, and record their outcomes.
Outcomes for spinner A:
Outcomes for spinner B:
Outcomes for spinner C:
Outcomes for spinner D:
Do any of the spinners have the same sample space? If so, do they have the same probabilities for each number to result?
For each spinner, what is the probability that it lands on the number 3? Explain or show your reasoning.
For each spinner, what is the probability that it lands on something other than the number 3? Explain or show your reasoning.
Noah put spinner D on top of his closed binder and spun it 10 times. It never landed on the number 1. How might you explain why this happened?
Han put spinner C on the floor and spun it 10 times. It never landed on the number 3, so he says that the probability of getting a 3 is 0. How might you explain why this happened?
Are you ready for more?
Problem 1
Design a spinner that has a
Activity 2: How Much Green?
Problem 1
Your teacher will give you a bag of blocks that are different colors. Do not look into the bag or take out more than 1 block at a time. Repeat these steps until everyone in your group has had 4 turns.
Take one block out of the bag and record whether or not it is green.
-
Put the block back into the bag, and shake the bag to mix up the blocks.
-
Pass the bag to the next person in the group.
What do you think is the probability of taking out a green block from this bag? Explain or show your reasoning.
How could you get a better estimate without opening the bag?
Lesson Summary
Suppose a bag contains 5 blocks. If we select a block at random from the bag, then the probability of getting any one of the blocks is
Now suppose a bag contains 5 blocks. Some of the blocks have a star, and some have a moon. If we select a block from the bag, then we will either get a star block or a moon block. The probability of getting a star block depends on how many there are in the bag.
In this example, the probability of selecting a star block at random from the first bag is
This shows that two experiments can have the same sample space, but different probabilities for each outcome.