Lesson 2Meanings of Division
Learning Goal
Let’s explore ways to think about division.
Learning Targets
I can create a diagram or write an equation that represents division and multiplication questions.
I can decide whether a division question is asking “how many groups?” or “how many in each group?”
I can explain two ways of interpreting a division expression such as
.
Warm Up: A Division Expression
Problem 1
Here is an expression:
What are some ways to think about this expression? Describe at least two meanings you think it could have.
Activity 1: Bags of Almonds
A baker has 12 pounds of almonds. She puts them in bags, so that each bag has the same weight.
Clare and Tyler drew diagrams and wrote equations to show how they were thinking about
Problem 1
How do you think Clare and Tyler thought about
Problem 2
Explain what each division expression could mean about the situation with the bags of almonds. Then draw a diagram and write a multiplication equation to show how you are thinking about the expression.
Are you ready for more?
Problem 1
A loaf of bread is cut into slices.
If each slice is
of a loaf, how many slices are there? If each slice is
of a loaf, how many slices are there? What happens to the number of slices as each slice gets smaller?
What would dividing by 0 mean in this situation about slicing bread?
Activity 2: Homemade Jams
Problem 1
Draw a diagram and write a multiplication equation to represent each of the following situations. Then answer the question.
Here is an applet to use if you choose to.
The toolbar includes buttons that represent 1 whole and fractional parts, as shown here. Click a button to choose a quantity, and then click in the work space of the applet window to drop it. When you’re done choosing pieces, use the Move tool (the arrow) to drag them into the jars. You can always go back and get more pieces, or delete them with the Trash Can tool.
The jars in this applet are shown as stacked to make it easier to combine the jam and find out how much you have.
Mai had 4 jars. In each jar, she put
cups of homemade blueberry jam. Altogether, how many cups of jam are in the jars? Priya filled 5 jars, using a total of
cups of strawberry jam. How many cups of jam are in each jar? Han had some jars. He put
cup of grape jam in each jar, using a total of cups. How many jars did he fill?
Print Version
Draw a diagram, and write a multiplication equation to represent each of the following situations. Then answer the question.
Mai had 4 jars. In each jar, she put
cups of homemade blueberry jam. Altogether, how many cups of jam are in the jars? Priya filled 5 jars, using a total of
cups of strawberry jam. How many cups of jam are in each jar? Han had some jars. He put
cup of grape jam in each jar, using a total of cups. How many jars did he fill?
Lesson Summary
Suppose 24 bagels are being distributed into boxes. The expression
24 bagels are distributed equally into 3 boxes, as represented by this diagram:
24 bagels are distributed into boxes, 3 bagels in each box, as represented by this diagram:
In both interpretations, the quotient is the same (
These two ways of seeing division are related to how 3, 8, and 24 are related in a multiplication. Both
can be read as “3 groups of 8 make 24.” can be read as “8 groups of 3 make 24.”
If 3 and 24 are the only numbers given, the multiplication equations would be:
In both cases, the division
Next, suppose we have 20 ounces of water to fill 6 equal-sized bottles, and the amount in each bottle is not given. Here we have 6 groups, an unknown amount in each, and a total of 20. We can represent it like this:
This situation can also be expressed using multiplication, but the unknown is a factor, rather than the product:
To find the unknown, we cannot simply multiply, but we can think of it as a division problem:
Now, suppose we have 40 ounces of water to pour into bottles, 12 ounces in each bottle, but the number of bottles is not given. Here we have an unknown number of groups, 12 in each group, and a total of 40.
Again, we can think of this in terms of multiplication, with a different factor being the unknown:
Likewise, we can use division to find the unknown:
Whenever we have a multiplication situation, one factor tells us how many groups there are, and the other factor tells us how much is in each group.
Sometimes we want to find the total. Sometimes we want to find how many groups there are. Sometimes we want to find how much is in each group. Anytime we want to find out how many groups there are or how much is in each group, we can represent the situation using division.