Lesson 17Drawing Triangles
Learning Goal
Let’s see how many different triangles we can draw with certain measurements.
Learning Targets
Given two angle measures and one side length, I can draw different triangles with these measurements or show that these measurements determine one unique triangle or no triangle.
Given two side lengths and one angle measure, I can draw different triangles with these measurements or show that these measurements determine one unique triangle or no triangle.
Warm Up: Using a Compass to Estimate Length
Problem 1
Draw a
angle. Use a compass to make sure both sides of your angle have a length of 5 centimeters.
If you connect the ends of the sides you drew to make a triangle, is the third side longer or shorter than 5 centimeters? How can you use a compass to explain your answer?
Activity 1: How Many Can You Draw?
Problem 1
Draw as many different triangles as you can with each of these sets of measurements:
Two angles measure
, and one side measures 4 cm. Two angles measure
, and one side measures 4 cm. One angle measures
, one angle measures , and one side measures 4 cm.
Print Version
Draw as many different triangles as you can with each of these sets of measurements:
Two angles measure
, and one side measures 4 cm. Two angles measure
, and one side measures 4 cm. One angle measures
, one angle measures , and one side measures 4 cm.
Problem 2
Which of these sets of measurements determine one unique triangle? Explain or show your reasoning.
Are you ready for more?
Problem 1
In the diagram, 9 toothpicks are used to make three equilateral triangles. Figure out a way to move only 3 of the toothpicks so that the diagram has exactly 5 equilateral triangles.
Activity 2: Revisiting How Many Can You Draw?
Problem 1
Use the applet to draw triangles.
Draw as many different triangles as you can with each of these sets of measurements:
One angle measures
, one side measures 4 cm and one side measures 5 cm. Two sides measure 6 cm and one angle measures
.
Print Version
Draw as many different triangles as you can with each of these sets of measurements:
One angle measures
, one side measures 4 cm and one side measures 5 cm. Two sides measure 6 cm and one angle measures
.
Problem 2
Did either of these sets of measurements determine one unique triangle? How do you know?
Lesson Summary
A triangle has six measures: three side lengths and three angle measures.
If we are given three measures, then sometimes, there is no triangle that can be made. For example, there is no triangle with side lengths 1, 2, 5, and there is no triangle with all three angles measuring
Sometimes, only one triangle can be made. By this we mean that any triangle we make will be the same, having the same six measures. For example, if a triangle can be made with three given side lengths, then the corresponding angles will have the same measures. Another example is shown here: an angle measuring
Sometimes, two or more different triangles can be made with three given measures. For example, here are two different triangles that can be made with an angle measuring
Three pieces of information about a triangle’s side lengths and angle measures may determine no triangles, one unique triangle, or more than one triangle. It depends on the information.