Lesson 10Dilations on a Square Grid
Learning Goal
Let’s dilate figures on a square grid.
Learning Targets
I can apply dilations to figures on a square grid.
I can apply dilations to polygons on a rectangular grid if I know the coordinates of the vertices and of the center of dilation.
If I know the angle measures and side lengths of a polygon, I know the angles measures and side lengths of the polygon if I apply a dilation with a certain scale factor.
Lesson Terms
- center of dilation
Warm Up: Dilations on a Grid
Problem 1
Find the dilation of triangle
with center and scale factor 2. Find the dilation of triangle
with center and scale factor .
Activity 1: Card Sort: Matching Dilations on a Coordinate Grid
Problem 1
Your teacher will give you some cards. Each of Cards 1 through 6 shows a figure in the coordinate plane and describes a dilation.
Each of Cards A through E describes the image of the dilation for one of the numbered cards.
Match number cards with letter cards. One of the number cards will not have a match. For this card, you’ll need to draw an image.
Are you ready for more?
Problem 1
The image of a circle under dilation is a circle when the center of the dilation is the center of the circle. What happens if the center of dilation is a point on the circle? Using center of dilation
Activity 2: Info Gap: Dilations
Problem 1
Your teacher will give you either a problem card or a data card. Do not show or read your card to your partner.
If your teacher gives you the problem card:
Silently read your card and think about what information you need to be able to answer the question.
Ask your partner for the specific information that you need.
Explain how you are using the information to solve the problem.
Continue to ask questions until you have enough information to solve the problem.
Share the problem card and solve the problem independently.
Read the data card and discuss your reasoning.
If your teacher gives you the data card:
Silently read your card.
Ask your partner “What specific information do you need?” and wait for them to ask for information.
If your partner asks for information that is not on the card, do not do the calculations for them. Tell them you don’t have that information.
Before sharing the information, ask “Why do you need that information?” Listen to your partner’s reasoning and ask clarifying questions.
Read the problem card and solve the problem independently.
Share the data card and discuss your reasoning.
Pause here so your teacher can review your work. Ask your teacher for a new set of cards and repeat the activity, trading roles with your partner.
Are you ready for more?
Problem 1
Triangle
What would the image of triangle
look like under a dilation with scale factor 0? What would the image of the triangle look like under dilation with a scale factor of -1? If possible, draw it and label the vertices
, , and . If it’s not possible, explain why not. If possible, describe what happens to a shape if it is dilated with a negative scale factor. If dilating with a negative scale factor is not possible, explain why not.
Lesson Summary
Square grids can be useful for showing dilations. The grid is helpful especially when the center of dilation and the point(s) being dilated lie at grid points. Rather than using a ruler to measure the distance between the points, we can count grid units.
For example, suppose we want to dilate point
Sometimes the square grid comes with coordinates. The coordinate grid gives us a convenient way to name points, and sometimes the coordinates of the image can be found with just arithmetic.
For example, to make a dilation with center
In general, an important use of coordinates is to communicate geometric information precisely. Let’s consider a quadrilateral
The coordinates of
, , , and The coordinates of the center of dilation,
The scale factor of the dilation
With this information, we can dilate the vertices