Lesson 6 Ten Times as Many
Let’s represent “10 times as many.”
Warm-up Choral Count: 12, 15 and 24
Count by 12 starting at 12.
Activity 1 Ten Times as Many
Problem 1
Here is a diagram that represents two quantities, A and B.
What are some possible values of A and B?
Select the equations that could be represented by the diagram.
Problem 2
For the equations that can’t be represented by the diagram:
Explain why the diagram does not represent these equations.
How would you change the equations so the diagram could represent them?
Compare your equations with your partner’s. Make at least two observations about the equations you and your partner wrote.
Activity 2 What Remains the Same?
Problem 1
Use the diagram to complete the table.
value of A
value of B
Problem 2
Select some values from your table to explain or show:
How you found the value of B when the value of A is known.
How you found the value of A when the value of B is known.
Practice Problem
Problem 1
If diagram A represents 15, what does diagram B represent? Explain your reasoning.
If diagram B represents 100, what does diagram A represent? Explain your reasoning.